Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation ABSTRACT Use of alkali-pretreated rice straw and untreated rice straw as substrates for enzyme
ثبت نشده
چکیده
Use of alkali-pretreated rice straw and untreated rice straw as substrates for enzyme production under solid-state cultivation was investigated. Cellulase produced from untreated rice straw showed higher activity of FPase, CMCase, β-glucosidase, and xylanase at 6.25 U/g substrate, 111.31 U/g substrate, 173.71 U/g substrate, and 433.75 U/g substrate respectively, as compared to 1.72 U/g substrate, 23.01 U/g substrate, 2.18 U/g substrate, and 45.46 U/g substrate for FPase, CMCase, β-glucosidase, and xylanase, respectively, when alkalipretreated substrate was used. The results of the X-ray diffractogram analysis showed an increase in relative crystallinity of cellulose in alkali-pretreated rice straw (62.41%) compared to 50.81% in untreated rice straw. However, the crystalline structure of cellulose was partially disrupted after alkali pretreatment, resulting in a decrease in absolute crystallinity of cellulose. The higher the crystallinity of cellulose, the more cellulase production was induced. The structural changes of rice straw before and after alkali pretreatment were compared by using Scanning Electron Microscopy. Fungal mycelial growth was also observed for both untreated and alkali-pretreated substrates. The results of this study indicated that untreated rice straw is a better substrate for cellulase and xylanase production under solid-state fermentation with low environmental impact. Keyword: Alkali pretreatment; Cellulase; Rice straw; Solid state fermentation; Trichoderma; Xylanase
منابع مشابه
Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production
BACKGROUND Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial app...
متن کاملBioethanol production from rice straw residues
A rice straw - cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas g...
متن کاملUtilization of microwave irradiated rice straw as a substrate for cost effective production of cellulase and xylanase from a potential fungus Myceliopthora thermophila SH1 isolated from hot spring of Northern Himalayans
Cellulase and xylanase production from rice straw using M.thermophila SH1 was assessed. The waste was dried, grinded to mesh size of 2.0mm and microwave pretreated. The powdered waste was than used as a substrate. Fermentation was carried out in flasks containing pretreated and untreated rice straw, vogel;s medium, cultured at 50C initially for 8 days to verify cellulase production and for 5 da...
متن کاملBioethanol production from rice straw by popping pretreatment
BACKGROUND Rice straw has considerable potential as a raw material for bioethanol production. Popping pretreatment of rice straw prior to downstream enzymatic hydrolysis and fermentation was found to increase cellulose to glucose conversion efficiency. The aim of this study was to investigate the influence of popping pretreatment and determine the optimal enzyme loading using a surface response...
متن کاملEnzymatic hydrolysis of sorghum straw using native cellulase produced by T. reesei NCIM 992 under solid state fermentation using rice straw
Cellulose is a major constituent of renewable lignocellulosic waste available in large quantities and is considered the most important reservoir of carbon for the production of glucose, for alternative fuel and as a chemical feedstock. Over the past decade, the emphasis has been on the enzymatic hydrolysis of cellulose to glucose and the efficiency of which depends on source of cellulosic subst...
متن کامل